MANERAS DE GENERALIZAR PATRONES LINEALES POR NIÑOS DE QUINTO GRADO
##plugins.themes.bootstrap3.article.main##
Edição:
v. 1 n. 1 (2024): junio
Seção: Artículos de Educación Matemática
Resumo
Este trabalho oferece evidências sobre os processos de generalização apresentados por crianças da quinta série. A generalização trata de padrões lineares a partir de sequências pictóricas que incentivam os alunos a propor suas próprias formas de generalizar que dão conta das diversas configurações que identificam. As sequências pictóricas foram elaboradas com base na literatura e entregues individualmente aos alunos para discussão. As generalizações feitas pelos alunos foram agrupadas em cinco categorias. Os resultados mostram as maneiras não padronizadas pelas quais os alunos generalizam.
##plugins.themes.bootstrap3.article.details##
Castro Gordillo, W. F., & Cuartas Cardona, J. S. (2024). MANERAS DE GENERALIZAR PATRONES LINEALES POR NIÑOS DE QUINTO GRADO. RIME, 1(1), 69-95. https://doi.org/10.32735/S2810-7187202400013065
Downloads
Não há dados estatísticos.
Referências
1. Beckmann, S. (2005). Mathematics for elementary school teachers. Boston: Pearson.
2. Blanton, M., & Kaput, J. (2011) Building mathematical generality into curriculum and instruction. In J. Cai and E. Knuth (Eds.), Early alge-braization: A global dialogue from multiple perspectives. Advances in Mathematics Education Monograph Series. New York: Springer
3. Blanton, M. & Kaput, J. (2005). Characterizing a classroom practice that promotes algebraic reasoning. Journal for Research in Mathematics Education, 36(5), 412-446.
4. Callejo, M. L. y Zapatera, A. (2014). Flexibilidad en la resolución de problemas de identificación de patrones lineales en estudiantes de edu-cación secundaria. Boletim de Educação Matemática, (28) 48, pp. 64-88. Universidade Estadual Paulista Júlio de MesquitaFilho. RioClaro, Brasil.
5. Carraher D., Schliemann, A., Brizuela, B. &Earnes, D. (2006). Arith-metic and Algebra in Early Mathematics Education. Journal for Re-search in Mathematics Education, 37 (2), 87-115. Recuperado de: http://www.jstor.org/stable/30034843
6. Carraher, D., Martinez, M. & Schliemann, A. (2008). Early algebra and mathematical generalization, ZDM, 40, 3–22.DOI 10.1007/s11858-007-0067-7.
7. Cañadas, M. C., Castro E. y Castro, E. (2008). Patrones, generalización y estrategias inductivas de estudiantes de 3º y 4º de Educación Secun-daria Obligatoria en el problema de las baldosas. PNA, 2(3), 137-151.
8. Castro, E., Cañadas, M. C. y Molina, M. (2010). El razonamiento in-ductivo como generador de conocimiento matemático. UNO, 54, 55-67. Recuperado el 23 de junio de 2012, en: http://digibug.ugr.es/bitstream/10481/26079/6/Uno-54-_2010.pdf
9. Cohen, L., et al. (2000). Research Methods in Education. New York, Routledge.
10. Del Moral, P. (2012). Unidad didáctica: Sucesiones. Progresiones aritméticas y geométricas. Unidad didáctica: Sucesiones. Progresiones aritméticas y geométricas. Tesis de Maestría. Universidad de Granada, España.
11. Deslauriers, J-P. (2004). Investigación cualitativa: Guía práctica. Editorial Papiro: Pereira, Colombia.
12. Dörfler, W. (2008). En route from patterns to algebra: comments and reflections. ZDM, 40(1), 143-160. DOI 10.1007/s11858-007-0071-y
13. Kieran, C. (2004). Algebraic thinking in the early grades: What is it? The Mathematics Educator, 8(1), 139-151. Recuperado el 5 de abril de 2009, en: http://math.nie.edu.sg/ame/matheduc/tme/tmeV8_1/Carolyn%20Kieran.pdf
14. Mason, J. (1996). Expressing generality and roots of algebra. In N. Bednarz, C. Kieran, & L. Lee (Eds.), Approaches to algebra: Per-spectives for research and teaching (pp. 65-86). Dordrecht, The Nether-lands: Kluwer.
15. Mason, J., Graham, A., Pimm, D. y Gowar, N. (1999). Rutas ha-cia/raíces del álgebra. Universidad Pedagógica y Tecnológica de Co-lombia: Tunja.
16. Martínez, M. V. & Brizuela, B. M. (2006). A third grader's way of thinking about linear function tables. Journal of Mathematical Beha-vior, 25(4), 285-298.
17. Merino, E. (2012). Patrones y representaciones de alumnos de 5º de educación primaria en una tarea generalización. Tesis de Maestría. Universidad de Granada, España, España. Recuperado el 28 de mayo de 2013, en: http://funes.uniandes.edu.co/1926/1/Merino2012PatronesRepresentaciones.pdf
18. Ministerio de Educación Nacional - MEN (1998). Lineamientos curriculares de matemáticas. Bogotá, Colombia: Magisterio.
19. Ministerio de Educación Nacional - MEN (2006). Estándares bá-sicos de competencias en lenguaje, matemáticas, ciencias y ciudadanas. Ministerio de Educación Nacional. Recuperado el 4 de febrero del 2013, en: http://www.mineducacion.gov.co/1621/articles-116042_archivo_pdf2.pdf
20. Molina, M. (2006). Desarrollo del pensamiento relacional y com-prensión del signo igual por alumnos de tercero de educación primaria. Tesis Doctoral. Universidad de Granada, España. Recuperado el 23 de enero del 2007, en: http://fqm193.ugr.es/produccion-cientifica/tesis/ver_detalles/5490/
21. Molina, M. (2011). Integración del pensamiento algebraico en la educación básica. Un experimento de enseñanza con alumnos de 8-9 años. En Martinho, M. H.; Ferreira, R. A. T.; da Ponte, João Pedro (Eds.), Ensino e Aprendizagem da Álgebra. Actas do Encontro de In-vestigacaoemEducacao Matemática, pp. 27-51. Póvoa do Varzim: EIEM. Recuperado el 12 de noviembre del 2013, en: http://www.redalyc.org/articulo.oa?id=291231123005
22. Lee, L. (1996). Expressing generality and roots of algebra. In Berdnarz, N., Kieran, C. & Lee, L. (Eds.). Approaches to Algebra: Per-spectives for Research and Teaching. Kluwer academy publishers: Dordrecht.
23. NCTM. (2000). Principles and standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics.
24. Ortega, M. (2012). Unidad didáctica. Sucesiones matemáticas. Progresiones aritméticas y geométricas. Tesis de Maestría. Universidad Granada, España.
25. Portan, A. M. y Costa, B. E. (1996). Las regularidades: fuente de aprendizajes matemáticos. Consejo Provincial de Educación.
26. Queensland Studies Authority (2005). About patterns and alge-bra. Queensland, Australia. 151-159. Recuperado el 9 de abril de 2008, en: http://www.qsa.qld.edu.au/downloads/p_10/kla_maths_info_pattern.pdf
27. Radford, L. (2007). Towards a Cultural Theory of Learning. In Pitta-Pantazi, D. & Philippou, G. (Eds.). Proceedings of the Fifth Con-gress of the European Society for Research in Mathematics Education (CERME – 5). Larnaca, Cyprus, February 22 – 26, 2007. CD-ROM, ISBN – 978-9963-671-25-0, pp. 1782-1797
28. Radford, L. (2013). En torno a tres problemas de la generaliza-ción. En: L. R.ico, M. C. Cañadas, J. Gutiérrez, M. Molina y I. Segovia (Eds.). Investigación en Didáctica de la Matemática. Homenaje a En-carnación Castro. Granada, España: Editorial Comares.
29. Rivera, F. D. & Becker, J. R. (2011). Formation of pattern gener-alization involving linear figural patterns among middle school stu-dents: Results of a three-year study. In J. Cai, E. Knuth (eds.), Early Algebraization, Advances in Mathematics Education. Berlin-Heidelberg. DOI 10.1007/978-3-642-17735-4_18
30. Rodríguez, G.; Gil, j. y García, E. (1996). Métodos de investiga-cióncualitativa, Málaga, Aljibe
31. Stacey, K. (1989). Finding and using patterns in linear generalis-ing problems. Educational Studies in Mathematics, 20(2), 147-164.
32. Van Amerom, B. (2002). Reinvention of early algebra: Develop-mental research on the transition from arithmetic to algebra. Tesis Doc-toral. Utrecht University: Utrecht. Recuperado el 34 de mayo de 2008, en: http://igitur-archive.library.uu.nl/dissertations/2002-1105-161148/full.pdf
33. Villa-Ochoa, J. A. (2006). El proceso de generalización matemáti-ca. Algunas reflexiones en torno a su validación. Tecno Lógicas, (16), 139-151
34. Warren, E. & Cooper, T. (2008). Generalising the pattern rule for visual growth patterns: Actions that support 8 year olds’ thinking. Educational Studies in Mathematics, 67(2), 171-185. DOI: 10.1007/s10649-007-9092-2
35. Zazkis, R. & Liljedahk, P. (2002). Generalization of patterns: The tension between algebraic thinking and algebraic notation. Educational Studies in Mathematics, 49(3), 379-402.
2. Blanton, M., & Kaput, J. (2011) Building mathematical generality into curriculum and instruction. In J. Cai and E. Knuth (Eds.), Early alge-braization: A global dialogue from multiple perspectives. Advances in Mathematics Education Monograph Series. New York: Springer
3. Blanton, M. & Kaput, J. (2005). Characterizing a classroom practice that promotes algebraic reasoning. Journal for Research in Mathematics Education, 36(5), 412-446.
4. Callejo, M. L. y Zapatera, A. (2014). Flexibilidad en la resolución de problemas de identificación de patrones lineales en estudiantes de edu-cación secundaria. Boletim de Educação Matemática, (28) 48, pp. 64-88. Universidade Estadual Paulista Júlio de MesquitaFilho. RioClaro, Brasil.
5. Carraher D., Schliemann, A., Brizuela, B. &Earnes, D. (2006). Arith-metic and Algebra in Early Mathematics Education. Journal for Re-search in Mathematics Education, 37 (2), 87-115. Recuperado de: http://www.jstor.org/stable/30034843
6. Carraher, D., Martinez, M. & Schliemann, A. (2008). Early algebra and mathematical generalization, ZDM, 40, 3–22.DOI 10.1007/s11858-007-0067-7.
7. Cañadas, M. C., Castro E. y Castro, E. (2008). Patrones, generalización y estrategias inductivas de estudiantes de 3º y 4º de Educación Secun-daria Obligatoria en el problema de las baldosas. PNA, 2(3), 137-151.
8. Castro, E., Cañadas, M. C. y Molina, M. (2010). El razonamiento in-ductivo como generador de conocimiento matemático. UNO, 54, 55-67. Recuperado el 23 de junio de 2012, en: http://digibug.ugr.es/bitstream/10481/26079/6/Uno-54-_2010.pdf
9. Cohen, L., et al. (2000). Research Methods in Education. New York, Routledge.
10. Del Moral, P. (2012). Unidad didáctica: Sucesiones. Progresiones aritméticas y geométricas. Unidad didáctica: Sucesiones. Progresiones aritméticas y geométricas. Tesis de Maestría. Universidad de Granada, España.
11. Deslauriers, J-P. (2004). Investigación cualitativa: Guía práctica. Editorial Papiro: Pereira, Colombia.
12. Dörfler, W. (2008). En route from patterns to algebra: comments and reflections. ZDM, 40(1), 143-160. DOI 10.1007/s11858-007-0071-y
13. Kieran, C. (2004). Algebraic thinking in the early grades: What is it? The Mathematics Educator, 8(1), 139-151. Recuperado el 5 de abril de 2009, en: http://math.nie.edu.sg/ame/matheduc/tme/tmeV8_1/Carolyn%20Kieran.pdf
14. Mason, J. (1996). Expressing generality and roots of algebra. In N. Bednarz, C. Kieran, & L. Lee (Eds.), Approaches to algebra: Per-spectives for research and teaching (pp. 65-86). Dordrecht, The Nether-lands: Kluwer.
15. Mason, J., Graham, A., Pimm, D. y Gowar, N. (1999). Rutas ha-cia/raíces del álgebra. Universidad Pedagógica y Tecnológica de Co-lombia: Tunja.
16. Martínez, M. V. & Brizuela, B. M. (2006). A third grader's way of thinking about linear function tables. Journal of Mathematical Beha-vior, 25(4), 285-298.
17. Merino, E. (2012). Patrones y representaciones de alumnos de 5º de educación primaria en una tarea generalización. Tesis de Maestría. Universidad de Granada, España, España. Recuperado el 28 de mayo de 2013, en: http://funes.uniandes.edu.co/1926/1/Merino2012PatronesRepresentaciones.pdf
18. Ministerio de Educación Nacional - MEN (1998). Lineamientos curriculares de matemáticas. Bogotá, Colombia: Magisterio.
19. Ministerio de Educación Nacional - MEN (2006). Estándares bá-sicos de competencias en lenguaje, matemáticas, ciencias y ciudadanas. Ministerio de Educación Nacional. Recuperado el 4 de febrero del 2013, en: http://www.mineducacion.gov.co/1621/articles-116042_archivo_pdf2.pdf
20. Molina, M. (2006). Desarrollo del pensamiento relacional y com-prensión del signo igual por alumnos de tercero de educación primaria. Tesis Doctoral. Universidad de Granada, España. Recuperado el 23 de enero del 2007, en: http://fqm193.ugr.es/produccion-cientifica/tesis/ver_detalles/5490/
21. Molina, M. (2011). Integración del pensamiento algebraico en la educación básica. Un experimento de enseñanza con alumnos de 8-9 años. En Martinho, M. H.; Ferreira, R. A. T.; da Ponte, João Pedro (Eds.), Ensino e Aprendizagem da Álgebra. Actas do Encontro de In-vestigacaoemEducacao Matemática, pp. 27-51. Póvoa do Varzim: EIEM. Recuperado el 12 de noviembre del 2013, en: http://www.redalyc.org/articulo.oa?id=291231123005
22. Lee, L. (1996). Expressing generality and roots of algebra. In Berdnarz, N., Kieran, C. & Lee, L. (Eds.). Approaches to Algebra: Per-spectives for Research and Teaching. Kluwer academy publishers: Dordrecht.
23. NCTM. (2000). Principles and standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics.
24. Ortega, M. (2012). Unidad didáctica. Sucesiones matemáticas. Progresiones aritméticas y geométricas. Tesis de Maestría. Universidad Granada, España.
25. Portan, A. M. y Costa, B. E. (1996). Las regularidades: fuente de aprendizajes matemáticos. Consejo Provincial de Educación.
26. Queensland Studies Authority (2005). About patterns and alge-bra. Queensland, Australia. 151-159. Recuperado el 9 de abril de 2008, en: http://www.qsa.qld.edu.au/downloads/p_10/kla_maths_info_pattern.pdf
27. Radford, L. (2007). Towards a Cultural Theory of Learning. In Pitta-Pantazi, D. & Philippou, G. (Eds.). Proceedings of the Fifth Con-gress of the European Society for Research in Mathematics Education (CERME – 5). Larnaca, Cyprus, February 22 – 26, 2007. CD-ROM, ISBN – 978-9963-671-25-0, pp. 1782-1797
28. Radford, L. (2013). En torno a tres problemas de la generaliza-ción. En: L. R.ico, M. C. Cañadas, J. Gutiérrez, M. Molina y I. Segovia (Eds.). Investigación en Didáctica de la Matemática. Homenaje a En-carnación Castro. Granada, España: Editorial Comares.
29. Rivera, F. D. & Becker, J. R. (2011). Formation of pattern gener-alization involving linear figural patterns among middle school stu-dents: Results of a three-year study. In J. Cai, E. Knuth (eds.), Early Algebraization, Advances in Mathematics Education. Berlin-Heidelberg. DOI 10.1007/978-3-642-17735-4_18
30. Rodríguez, G.; Gil, j. y García, E. (1996). Métodos de investiga-cióncualitativa, Málaga, Aljibe
31. Stacey, K. (1989). Finding and using patterns in linear generalis-ing problems. Educational Studies in Mathematics, 20(2), 147-164.
32. Van Amerom, B. (2002). Reinvention of early algebra: Develop-mental research on the transition from arithmetic to algebra. Tesis Doc-toral. Utrecht University: Utrecht. Recuperado el 34 de mayo de 2008, en: http://igitur-archive.library.uu.nl/dissertations/2002-1105-161148/full.pdf
33. Villa-Ochoa, J. A. (2006). El proceso de generalización matemáti-ca. Algunas reflexiones en torno a su validación. Tecno Lógicas, (16), 139-151
34. Warren, E. & Cooper, T. (2008). Generalising the pattern rule for visual growth patterns: Actions that support 8 year olds’ thinking. Educational Studies in Mathematics, 67(2), 171-185. DOI: 10.1007/s10649-007-9092-2
35. Zazkis, R. & Liljedahk, P. (2002). Generalization of patterns: The tension between algebraic thinking and algebraic notation. Educational Studies in Mathematics, 49(3), 379-402.