NARRATIVE OF UNIVERSITY TEACHERS ABOUT THE CONCEPT LOGISTIC EQUATION: THEORETICAL ANALYSIS IN THE APOE
Main Article Content
Section: Artículos de Educación Matemática
Abstract
This paper presents the stories of four university-level professors about the teaching-learning of the Logistic Equation and its importance in educational mathematics from their teaching perspective. The data was collected through an unstructured interview and narrative was used for analysis. These narratives indicated a path to follow to create a preliminary genetic diagnosis of the Logistics Equation according to one of the perspectives of the first component, theoretical analysis, of APOS: a view from the didactics of mathematics.
Article Details
Quilantán Ortega, I., & Rodríguez Vásquez, F. M. (2024). NARRATIVE OF UNIVERSITY TEACHERS ABOUT THE CONCEPT LOGISTIC EQUATION: THEORETICAL ANALYSIS IN THE APOE. RIME, 1(2), 113-127. https://doi.org/10.32735/S2810-7187202400023784
Downloads
![Creative Commons License](http://i.creativecommons.org/l/by-nc/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
1. Ekici, C., Plyley, C. Inquiry-Based Modeling of Population Dynamics with Logistic Differential and Difference Equations. Primus. 2019; 29(6): 553-570. https://doi.org/10.1080/10511970.2018.1484399
2. Kadas, Z. Discrete Population Models: Why They Belong in a Differen-tial Equations Course. Primus. 2018; 28(8): 785-796. https://doi.org/10.1080/10511970.2018.1443532
3. Parra, E., Gordillo, W., Pinzón, W. J. Modelos de Crecimiento Pobla-cional: Enseñanza-Aprendizaje desde las Ecuaciones Recursivas. For-mación Universitaria. 2019; 12(1): 25-34.
4. Bejarano, C. A. Modelos de simulación para el estudio del crecimiento poblacional exponencial. Epsilon. 2005; 1(4): 69-81. https://ciencia.lasalle.edu.co/ep/vol1/iss4/23/
5. Scott, P. Populate or Perish: Logo and the Logistic Equation. Mathemat-ics in School, 2000. 14-16.
6. Medina, M. J., Cortés, C. M., Cortés, I. M, Pérez, F. A., Manzano, C. M. Estudio sobre modelos predictivos para la COVID-19 en Cuba. Medisur. 2020; 18(3): 11.
7. Valero, C. M. A., Lezama, A. F. J. Una experiencia didáctica con estu-diantes de bachillerato en torno a la modelación de los datos del CO-VID19 en México. El cálculo y su Enseñanza. Enseñanza de la Ciencia y la Matemática. 2020; 15(2): 1-19.
8. Winkel, B. J. Sourcing for Parameter Estimation and Study of Logistic Differential Equation. International Journal of Mathematical Education in Science and Technology. 2012; 43(1): 67-83. https://doi.org/10.1080/0020739X.2011.582178
9. Ang, K. C. A simple model for a SARS epidemic. Teaching Mathemat-ics and Its Applications: An International Journal of the IMA. 2004; 23(4): 181-188.
10. Habre, S. Exploring students’ strategies to solve ordinary differential equations in a reformed setting. Journal of Mathematical Behavior. 2000; 18(4): 455-472. https://doi.org/10.1016/S0732-3123(00)00024-9
11. Rasmussen, C. New directions in differential equations: A framework for interpreting students’ understandings and difficulties. Journal of Mathematical Behavior. 2001; 20(1): 55-87.
12. Soon, W., Tirtasanjaya, L. L., McInnes, B. Understanding the difficul-ties faced by engineering undergraduates in learning mathematical mod-elling. International Journal of Mathematical Education in Science and Technology. 2011; 42(8): 1023-1039.
13. Rodríguez, J., Ulloa, J. Alternativa didáctica para el estudio del modelo Gompertz. Investigación e Innovación en Matemática Educativa. 2017; 2: 98-114.
14. Pelinovsky, E., Kurkin, A., Kurkina, O., Kokoulina, M., Epifanova, A. Logistic equation and COVID-19. Chaos, Solitons & Fractals. 2020; 140.
15. Shayak, B., Sharma, M. M. Retarded logistic equation as a universal dynamic model for the spread of COVID-19. medRxiy. 2020.
16. Tene, T., Guevara, M., Svozilík, J., Tene-Fernandez, R., Gómez, C. V. Analysis of COVID-19 Outbreak in Ecuador Using the Logistic Model. Emerging Science Journal. 2021; 5: 105-118.
17. Arnon, I., Cottrill, J., Dubinsky, E., Oktac, A., Fuentes, SR., Trigueros, M., y Weller, K. APOS Theory. A Framework for Research and Curric-ulum Development. Mathematics Education; Nueva York: Springer; 2014.
18. Álvarez-Gayou, J. Cómo hacer investigación cualitativa. Fundamentos y metodología. México: Paidós. 2005.
19. Miramontes, P., Sánchez-Garduño, F. Variables elegantes: Un método para determinar los parámetros en modelos simples en Biología. Misce-lánea Matemática, SMM. 1993; 23: 27-38.
2. Kadas, Z. Discrete Population Models: Why They Belong in a Differen-tial Equations Course. Primus. 2018; 28(8): 785-796. https://doi.org/10.1080/10511970.2018.1443532
3. Parra, E., Gordillo, W., Pinzón, W. J. Modelos de Crecimiento Pobla-cional: Enseñanza-Aprendizaje desde las Ecuaciones Recursivas. For-mación Universitaria. 2019; 12(1): 25-34.
4. Bejarano, C. A. Modelos de simulación para el estudio del crecimiento poblacional exponencial. Epsilon. 2005; 1(4): 69-81. https://ciencia.lasalle.edu.co/ep/vol1/iss4/23/
5. Scott, P. Populate or Perish: Logo and the Logistic Equation. Mathemat-ics in School, 2000. 14-16.
6. Medina, M. J., Cortés, C. M., Cortés, I. M, Pérez, F. A., Manzano, C. M. Estudio sobre modelos predictivos para la COVID-19 en Cuba. Medisur. 2020; 18(3): 11.
7. Valero, C. M. A., Lezama, A. F. J. Una experiencia didáctica con estu-diantes de bachillerato en torno a la modelación de los datos del CO-VID19 en México. El cálculo y su Enseñanza. Enseñanza de la Ciencia y la Matemática. 2020; 15(2): 1-19.
8. Winkel, B. J. Sourcing for Parameter Estimation and Study of Logistic Differential Equation. International Journal of Mathematical Education in Science and Technology. 2012; 43(1): 67-83. https://doi.org/10.1080/0020739X.2011.582178
9. Ang, K. C. A simple model for a SARS epidemic. Teaching Mathemat-ics and Its Applications: An International Journal of the IMA. 2004; 23(4): 181-188.
10. Habre, S. Exploring students’ strategies to solve ordinary differential equations in a reformed setting. Journal of Mathematical Behavior. 2000; 18(4): 455-472. https://doi.org/10.1016/S0732-3123(00)00024-9
11. Rasmussen, C. New directions in differential equations: A framework for interpreting students’ understandings and difficulties. Journal of Mathematical Behavior. 2001; 20(1): 55-87.
12. Soon, W., Tirtasanjaya, L. L., McInnes, B. Understanding the difficul-ties faced by engineering undergraduates in learning mathematical mod-elling. International Journal of Mathematical Education in Science and Technology. 2011; 42(8): 1023-1039.
13. Rodríguez, J., Ulloa, J. Alternativa didáctica para el estudio del modelo Gompertz. Investigación e Innovación en Matemática Educativa. 2017; 2: 98-114.
14. Pelinovsky, E., Kurkin, A., Kurkina, O., Kokoulina, M., Epifanova, A. Logistic equation and COVID-19. Chaos, Solitons & Fractals. 2020; 140.
15. Shayak, B., Sharma, M. M. Retarded logistic equation as a universal dynamic model for the spread of COVID-19. medRxiy. 2020.
16. Tene, T., Guevara, M., Svozilík, J., Tene-Fernandez, R., Gómez, C. V. Analysis of COVID-19 Outbreak in Ecuador Using the Logistic Model. Emerging Science Journal. 2021; 5: 105-118.
17. Arnon, I., Cottrill, J., Dubinsky, E., Oktac, A., Fuentes, SR., Trigueros, M., y Weller, K. APOS Theory. A Framework for Research and Curric-ulum Development. Mathematics Education; Nueva York: Springer; 2014.
18. Álvarez-Gayou, J. Cómo hacer investigación cualitativa. Fundamentos y metodología. México: Paidós. 2005.
19. Miramontes, P., Sánchez-Garduño, F. Variables elegantes: Un método para determinar los parámetros en modelos simples en Biología. Misce-lánea Matemática, SMM. 1993; 23: 27-38.